Association equilibrium of the HIV-1 capsid protein in a crowded medium reveals that hexamerization during capsid assembly requires a functional C-domain dimerization interface.
نویسندگان
چکیده
Polymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD). At physiological ionic strength in noncrowded conditions, CA subunits homodimerize through this CTD-CTD interface, but do not hexamerize through the other interfaces (those involving the NTD). Here we have investigated whether macromolecular crowding conditions are able to promote hexamerization of the isolated NTD and/or full-length CA (with an inactive CTD-CTD interface to prevent polymerization). The oligomerization state of the proteins was determined using analytical ultracentrifugation in the absence or presence of high concentrations of an inert macromolecular crowding agent. Under the same conditions that promoted efficient assembly of intact CA dimers, neither NTD nor CA with an inactive CTD-CTD interface showed any tendency to form hexamers or any other oligomer. This inability to hexamerize was observed even in macromolecularly crowded conditions. The results indicate that a functional CTD-CTD interface is strictly required for hexamerization of HIV-1 CA through the other interfaces. Together with previous results, these observations suggest that establishment of NTD-CTD interactions involved in CA hexamerization during mature HIV-1 capsid assembly requires a homodimerization-dependent conformational switching of CTD.
منابع مشابه
Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein.
The carboxyl-terminal domain, residues 146 to 231, of the human immunodeficiency virus-1 (HIV-1) capsid protein [CA(146-231)] is required for capsid dimerization and viral assembly. This domain contains a stretch of 20 residues, called the major homology region (MHR), which is conserved across retroviruses and is essential for viral assembly, maturation, and infectivity. The crystal structures ...
متن کاملMammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain.
Retroviral assembly is driven by multiple interactions mediated by the Gag polyprotein, the main structural component of the forming viral shell. Critical determinants of Gag oligomerization are contained within the C-terminal domain (CTD) of the capsid protein, which also harbors a conserved sequence motif, the major homology region (MHR), in the otherwise highly variable Gag. An unexpected cl...
متن کاملEffect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro.
Previous studies on the self-assembly of capsid protein CA of human immunodeficiency virus type 1 (HIV-1) in vitro have provided important insights on the structure and assembly of the mature HIV-1 capsid. However, CA polymerization in vitro was previously observed to occur only at very high ionic strength. Here, we have analyzed the effects on CA assembly in vitro of adding unrelated, inert ma...
متن کاملDomain-swapped dimerization of the HIV-1 capsid C-terminal domain.
Assembly of the HIV and other retroviruses is primarily driven by the oligomerization of the Gag polyprotein, the major viral structural protein capable of forming virus-like particles even in the absence of all other virally encoded components. Several critical determinants of Gag oligomerization are located in the C-terminal domain of the capsid protein (CA-CTD), which encompasses the most co...
متن کاملRationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity
Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 104 4 شماره
صفحات -
تاریخ انتشار 2013